Large Language Models are Demonstration Pre-Selectors for Themselves

ICLR 2025 Conference Submission13601 Authors

28 Sept 2024 (modified: 28 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Large Language Model, Demonstration Pre-Selection, In-Context Learning
TL;DR: Our main contribution is to propose a novel demonstration pre-selector which is different from previous demonstration selectors.
Abstract: In-context learning with large language models (LLMs) delivers strong few-shot performance by choosing few-shot demonstrations from the entire training dataset. However, previous few-shot in-context learning methods, which calculate similarity scores for choosing demonstrations, incur high computational costs by repeatedly retrieving large-scale datasets for each query. This is due to their failure to recognize that not all demonstrations are equally informative, and many less informative demonstrations can be inferred from a core set of highly informative ones. To this end, we propose FEEDER (FEw yet Essential Demonstration prE-selectoR), a novel \emph{pre-selection} framework that identifies a core subset of demonstrations containing the most informative examples. This subset, referred to as the FEEDER set, consists of demonstrations that capture both the ''sufficiency'' and ''necessity'' information to infer the entire dataset. Notice that FEEDER is selected before the few-shot in-context learning, enabling more efficient few-shot demonstrations choosing in a smaller set. To identify FEEDER, we propose a novel effective tree based algorithm. Once selected, it can replace the original dataset, leading to improved efficiency and prediction accuracy in few-shot in-context learning. Additionally, FEEDER also benefit fine-tuning LLMs, we propose a bi-level optimization method enabling more efficient training without sacrificing performance when datasets become smaller. Our experiments are on 6 text classification datasets, 1 reasoning dataset, and 1 semantic-parsing dataset, across 6 LLMs (ranging from 335M to 7B parameters), demonstrate that: (i) In few-shot inference, FEEDER achieves superior (or comparable) performance while utilizing only half the input training data. (ii) In fine-tuning, FEEDER significantly boosts the performance of LLMs.
Supplementary Material: zip
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13601
Loading