Smoothed Graph Contrastive Learning via Seamless Proximity Integration

Published: 16 Nov 2024, Last Modified: 26 Nov 2024LoG 2024 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Contrastive learning, Graph representation learning, machine learning, geometric structure
Abstract: Graph contrastive learning (GCL) aligns node representations by classifying node pairs into positives and negatives using a selection process that typically relies on establishing correspondences within two augmented graphs. The conventional GCL approaches incorporate negative samples uniformly in the contrastive loss, resulting in the equal treatment of negative nodes, regardless of their proximity to the true positive. In this paper, we present a Smoothed Graph Contrastive Learning model (SGCL), which leverages the geometric structure of augmented graphs to inject proximity information associated with positive/negative pairs in the contrastive loss, thus significantly regularizing the learning process. The proposed SGCL adjusts the penalties associated with node pairs in contrastive loss by incorporating three distinct smoothing techniques that result in proximity-aware positives and negatives. To enhance scalability for large-scale graphs, the proposed framework incorporates a graph batch-generating strategy that partitions the given graphs into multiple subgraphs, facilitating efficient training in separate batches. Through extensive experimentation in the unsupervised setting on various benchmarks, particularly those of large scale, we demonstrate the superiority of our proposed framework against recent baselines.
Submission Type: Full paper proceedings track submission (max 9 main pages).
Poster: png
Poster Preview: png
Submission Number: 47
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview