Re-TASK: Revisiting LLM Tasks from Capability, Skill, and Knowledge Perspectives

25 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: LLM, Task, Capability, Knowledge, Skill, Chain-of-Thought
TL;DR: We propose the Re-TASK framework, combining Chain-of-Thought with targeted knowledge injection and skill adaptation, to improve LLM performance on complex, domain-specific tasks.
Abstract: The Chain-of-Thought (CoT) paradigm has become a pivotal method for solving complex problems. However, its application to intricate, domain-specific tasks remains challenging, as large language models (LLMs) often struggle to accurately decompose these tasks and, even when decomposition is correct, fail to execute the subtasks effectively. This paper introduces the Re-TASK framework, a novel theoretical model that revisits LLM tasks from the perspectives of capability, skill, and knowledge, drawing on the principles of Bloom's Taxonomy and Knowledge Space Theory. While CoT offers a workflow perspective on tasks, the Re-TASK framework introduces a Chain-of-Learning view, illustrating how tasks and their corresponding subtasks depend on various capability items. Each capability item is further dissected into its constituent aspects of knowledge and skills. Our framework reveals that many CoT failures in domain-specific tasks stem from insufficient knowledge or inadequate skill adaptation. In response, we combine CoT with the Re-TASK framework and implement a carefully designed Re-TASK prompting strategy to improve task performance. Specifically, we identify core capability items linked to tasks and subtasks, then strengthen these capabilities through targeted knowledge injection and skill adaptation. We validate the Re-TASK framework on three datasets across the law, finance, and mathematics domains, achieving significant improvements over the baseline models. Notably, our approach yields a remarkable 44.42\% improvement with the Yi-1.5-9B model and a 33.08\% improvement with the Llama3-Chinese-8b on the legal dataset. These experimental results confirm the effectiveness of the Re-TASK framework, demonstrating substantial enhancements in both the performance and applicability of LLMs.
Supplementary Material: zip
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4328
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview