Keywords: Large Multimodal Models, Multi-token Prediction, Non-Autoregressive Learning
Abstract: Recent advances in large language models (LLMs) have attracted significant interest in extending their capabilities to multimodal scenarios, particularly for speech-to-speech conversational systems. However, existing multimodal models handling interleaved audio and text rely on autoregressive methods, overlooking that text depends on target-target relations whereas audio depends mainly on source-target relations. In this work, we propose Text-to-Talk (TtT), a unified audio-text framework that integrates autoregressive (AR) text generation with non-autoregressive (NAR) audio diffusion in a single Transformer. By leveraging the any-order autoregressive property of absorbing discrete diffusion, our approach provides a unified training objective for text and audio. To support this hybrid generation paradigm, we design a modality-aware attention mechanism that enforces causal decoding for text while allowing bidirectional modeling within audio spans, and further introduce three training strategies that reduce train-test discrepancies. During inference, TtT employs block-wise diffusion to synthesize audio in parallel while flexibly handling variable-length outputs. Extensive experiments across Audio-QA and ASR tasks demonstrate the effectiveness of our approach, with detailed ablation studies validating each proposed component. We will open-source our models, data and code to facilitate future research in this direction.
Primary Area: foundation or frontier models, including LLMs
Submission Number: 25264
Loading