From Text to Talk: Audio-Language Model Needs Non-Autoregressive Joint Training

ICLR 2026 Conference Submission25264 Authors

20 Sept 2025 (modified: 23 Dec 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Large Multimodal Models, Multi-token Prediction, Non-Autoregressive Learning
Abstract: Recent advances in large language models (LLMs) have attracted significant interest in extending their capabilities to multimodal scenarios, particularly for speech-to-speech conversational systems. However, existing multimodal models handling interleaved audio and text rely on autoregressive (AR) methods, overlooking that text depends on target-target relations whereas audio depends mainly on source-target relations. In this work, we propose Text-to-Talk (TtT), a unified audio-text framework that integrates AR text generation with non-autoregressive (NAR) audio diffusion in a single Transformer. By leveraging the any-order AR property of absorbing discrete diffusion, our approach provides a unified training objective for text and audio. To support this hybrid generation paradigm, we design a modality-aware attention mechanism that enforces causal decoding for text while allowing bidirectional modeling within audio spans, and further introduce three training strategies that reduce train-test discrepancies. During inference, TtT employs block-wise diffusion to synthesize audio in parallel while flexibly handling variable-length outputs. Comprehensive experiments on Audio-QA, ASR, AAC and speech-to-speech benchmarks show that TtT consistently surpasses strong AR and NAR baselines, with additional ablation and training-strategy analyses confirming the contribution of each component. We will open-source our models, data and code to facilitate future research in this direction.
Primary Area: foundation or frontier models, including LLMs
Submission Number: 25264
Loading