RareSyn: Health Record Synthesis for Rare Disease Diagnosis

ACL ARR 2025 May Submission2638 Authors

19 May 2025 (modified: 03 Jul 2025)ACL ARR 2025 May SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Diagnosis based on Electronic Health Records (EHRs) often struggles with data scarcity and privacy concerns. To address these issues, we introduce RareSyn, an innovative data synthesis approach designed to augment and de-identify EHRs, with a focus on rare diseases. The core insight of RareSyn involves using seed EHRs of rare diseases to recall similar records from both common and rare diseases, and then leveraging Large Language Models to substitute the key medical information (e.g., symptoms or examination details) in these records with information from the knowledge graph, thereby generating new EHRs. We first train a transformer Encoder with contrastive learning to integrate various types of medical knowledge. Then, RareSyn engages in repeating processes of recalling similar EHRs, structuring EHRs, revising EHRs, and generating new EHRs until the produced EHRs achieve extensive coverage of the rare disease knowledge. We assess RareSyn based on its utility for diagnosis modeling, the diversity of medical knowledge it incorporates, and the privacy of the synthesized EHRs. Extensive experiments demonstrate its effectiveness in improving disease diagnosis, enhancing diversity, and maintaining privacy.
Paper Type: Long
Research Area: NLP Applications
Research Area Keywords: healthcare applications, clinical NLP, text-to-text generation
Contribution Types: Model analysis & interpretability, NLP engineering experiment, Reproduction study, Approaches to low-resource settings, Data resources, Data analysis
Languages Studied: Chinese
Keywords: healthcare applications, clinical NLP, text-to-text generation
Submission Number: 2638
Loading