Greedy Actor-Critic: A New Conditional Cross-Entropy Method for Policy ImprovementDownload PDF


22 Sept 2022, 12:40 (modified: 19 Nov 2022, 00:33)ICLR 2023 Conference Blind SubmissionReaders: Everyone
Keywords: actor-critic, policy gradient, entropy, cross-entropy method, greedy actor-critic, policy optimization
TL;DR: We propose an alternative update for the actor in actor-critic algorithms that does not rely on entropy-regularization
Abstract: Many policy gradient methods are variants of Actor-Critic (AC), where a value function (critic) is learned to facilitate updating the parameterized policy (actor). The update to the actor involves a log-likelihood update weighted by the action-values, with the addition of entropy regularization for soft variants. In this work, we explore an alternative update for the actor, based on an extension of the cross entropy method (CEM) to condition on inputs (states). The idea is to start with a broader policy and slowly concentrate around maximal actions, using a maximum likelihood update towards actions in the top percentile per state. The speed of this concentration is controlled by a proposal policy, that concentrates at a slower rate than the actor. We first provide a policy improvement result in an idealized setting, and then prove that our conditional CEM (CCEM) strategy tracks a CEM update per state, even with changing action-values. We empirically show that our Greedy AC algorithm, that uses CCEM for the actor update, performs better than Soft AC and is much less sensitive to entropy-regularization.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Reinforcement Learning (eg, decision and control, planning, hierarchical RL, robotics)
9 Replies