On Minimizing Adversarial Counterfactual Error in Adversarial Reinforcement Learning

Published: 22 Jan 2025, Last Modified: 27 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Reinforcement learning, robust reinforcement learning, adversarial robustness, partially observable markov decision problems
TL;DR: Adversarially robust reinforcement learning for observation-level perturbations. We provide novel robust strategies by explicitly considering the partially-observable nature of adversarial RL.
Abstract: Deep Reinforcement Learning (DRL) policies are highly susceptible to adversarial noise in observations, which poses significant risks in safety-critical scenarios. The challenge inherent to adversarial perturbations is that by altering the information observed by the agent, the state becomes only partially observable. Existing approaches address this by either enforcing consistent actions across nearby states or maximizing the worst-case value within adversarially perturbed observations. However, the former suffers from performance degradation when attacks succeed, while the latter tends to be overly conservative, leading to suboptimal performance in benign settings. We hypothesize that these limitations stem from their failing to account for partial observability directly. To this end, we introduce a novel objective called Adversarial Counterfactual Error (ACoE), defined on the beliefs about the true state and balancing value optimization with robustness. To make ACoE scalable in model-free settings, we propose the theoretically-grounded surrogate objective Cumulative-ACoE (C-ACoE). Our empirical evaluations on standard benchmarks (MuJoCo, Atari, and Highway) demonstrate that our method significantly outperforms current state-of-the-art approaches for addressing adversarial RL challenges, offering a promising direction for improving robustness in DRL under adversarial conditions. Our code is available at https://github.com/romanbelaire/acoe-robust-rl.
Supplementary Material: zip
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9512
Loading