HPSERec: A Hierarchical Partitioning and Stepwise Enhancement Framework for Long-tailed Sequential Recommendation

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Sequential Recommendation; Long-tail Problem; Transfer Learning
Abstract: The long-tail problem in sequential recommender systems stems from imbalanced interaction data, resulting in suboptimal model performance for tail users and items. Recent studies have leveraged head data to enhance tail data for diminish the impact of the long-tail problem. However, these methods often adopt ad-hoc strategies to distinguish between head and tail data, which fails to capture the underlying distributional characteristics and structural properties of each category. Moreover, due to a substantial representational gap exists between head and tail data, head-to-tail enhancement strategies are susceptible to negative transfer, often leading to a decline in overall model performance. To address these issues, we propose a hierarchical partitioning and stepwise enhancement framework, called HPSERec, for long-tailed sequential recommendation. HPSERec partitions the item set into subsets based on a data imbalance metric, assigning an expert network to each subset to capture user-specific local features. Subsequently, we apply knowledge distillation to progressively improve long-tail interest representation, followed by a Sinkhorn optimal transport-based feedback module, which aligns user representations across expert levels through a globally optimal and softly matched mapping. Extensive experiments on three real-world datasets demonstrate that HPSERec consistently outperforms all baseline methods. The implementation code is available at https://anonymous.4open.science/r/HPSERec-2404.
Supplementary Material: zip
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 27031
Loading