EraseDiff: Erasing Data Influence in Diffusion Models

23 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: societal considerations including fairness, safety, privacy
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Machine unlearning, Diffusion-based generative models
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: An effective and efficient unlearning algorithm for diffusion models across both conditional and unconditional image generation scenarios.
Abstract: In response to data protection regulations and the ``right to be forgotten'', in this work, we introduce an unlearning algorithm for diffusion models. Our algorithm equips a diffusion model with a mechanism to mitigate the concerns related to data memorization. To achieve this, we formulate the unlearning problem as a bi-level optimization problem, wherein the outer objective is to preserve the utility of the diffusion model on the remaining data. The inner objective aims to scrub the information associated with forgetting data by deviating the learnable generative process from the ground-truth denoising procedure. To solve the resulting bi-level problem, we adopt a first-order method, having superior practical performance while being vigilant about the diffusion process and solving a bi-level problem therein. Empirically, we demonstrate that our algorithm can preserve the model utility, effectiveness, and efficiency while removing across two widely-used diffusion models and in both conditional and unconditional image generation scenarios. In our experiments, we demonstrate the unlearning of classes, attributes, and even a race from face and object datasets such as UTKFace, CelebA, CelebA-HQ, and CIFAR10. The source code of our algorithm is available at https://github.com/AnonymousUser-hello/DiffusionUnlearning.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7041
Loading