Improved Stein Variational Gradient Descent with Importance WeightsDownload PDF

Published: 01 Feb 2023, Last Modified: 14 Oct 2024Submitted to ICLR 2023Readers: Everyone
Keywords: SVGD, Importance Sampling, Importance Weights, Sampling, R\'enyi Divergence, KL-divergence
TL;DR: theoretical paper to show the power of importance weights in SVGD
Abstract: Stein Variational Gradient Descent~(\algname{SVGD}) is a popular sampling algorithm used in various machine learning tasks. It is well known that \algname{SVGD} arises from a discretization of the kernelized gradient flow of the Kullback-Leibler divergence $\KL\left(\cdot\mid\pi\right)$, where $\pi$ is the target distribution. In this work, we propose to enhance \algname{SVGD} via the introduction of {\em importance weights}, which leads to a new method for which we coin the name \algname{$\beta$-SVGD}. In the continuous time and infinite particles regime, the time for this flow to converge to the equilibrium distribution $\pi$, quantified by the Stein Fisher information, depends on $\rho_0$ and $\pi$ very weakly. This is very different from the kernelized gradient flow of Kullback-Leibler divergence, whose time complexity depends on $\KL\left(\rho_0\mid\pi\right)$. Under certain assumptions, we provide a descent lemma for the population limit \algname{$\beta$-SVGD}, which covers the descent lemma for the population limit \algname{SVGD} when $\beta\to 0$. We also illustrate the advantages of \algname{$\beta$-SVGD} over \algname{SVGD} by simple experiments.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: General Machine Learning (ie none of the above)
Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 2 code implementations](https://www.catalyzex.com/paper/improved-stein-variational-gradient-descent/code)
8 Replies

Loading