Adaptive Decentralized Federated Learning for Robust Optimization

ICLR 2026 Conference Submission15591 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Federated Learning, Decentralized Federated Learning, Heterogeneity, Robust Optimization, Robust Estimation
Abstract: In decentralized federated learning (DFL), the presence of abnormal clients, often caused by noisy or poisoned data, can significantly disrupt the learning process and degrade the overall robustness of the model. Previous methods on this issue often require a sufficiently large number of normal neighboring clients or prior knowledge of reliable clients, which reduces the practical applicability of DFL. To address these limitations, we develop here a novel adaptive DFL (aDFL) approach for robust estimation. The key idea is to adaptively adjust the learning rates of clients. By assigning smaller rates to suspicious clients and larger rates to normal clients, aDFL mitigates the negative impact of abnormal clients on the global model in a fully adaptive way. Our theory does not put any stringent conditions on neighboring nodes and requires no prior knowledge. A rigorous convergence analysis is provided to guarantee the oracle property of aDFL. Extensive numerical experiments demonstrate the superior performance of the aDFL method.
Supplementary Material: zip
Primary Area: optimization
Submission Number: 15591
Loading