scipy.spatial.transform: Differentiable Framework-Agnostic 3D Transformations in Python

Published: 21 Nov 2025, Last Modified: 21 Nov 2025DiffSys 2025EveryoneRevisionsCC BY 4.0
Keywords: differentiable, open source, 3D transformation, python
TL;DR: We present a framework-agnostic rewrite of scipy's 3D rotation/transformation that supports autodiff and will be part of the next release.
Abstract: Three-dimensional rigid-body transforms, i.e. rotations and translations, are central to modern differentiable machine learning pipelines in robotics, vision, and simulation. However, numerically robust and mathematically correct implementations, particularly on SO(3), are error-prone due to issues such as axis conventions, normalizations, composition consistency and subtle errors that only appear in edge cases. SciPy’s spatial.transform module is a rigorously tested Python implementation, but historically only supported NumPy, limiting adoption in GPU-accelerated and autodiff-based workflows. We present a complete overhaul of SciPy’s spatial.transform functionality that makes it compatible with any array library implementing the Python array API, including JAX, PyTorch, and CuPy. The revised implementation preserves the established SciPy interface while enabling GPU/TPU execution, JIT compilation, vectorized batching, and differentiation via native autodiff of the chosen backend. We demonstrate how this foundation supports differentiable scientific computing through two case studies: (i) scalability of 3D transforms and rotations and (ii) a JAX drone simulation that leverages SciPy’s Rotation for accurate integration of rotational dynamics. Our contributions have been merged into SciPy main and will ship in the next release, providing a framework-agnostic, production-grade basis for 3D spatial math in differentiable systems and ML.
Email Sharing: We authorize the sharing of all author emails with Program Chairs.
Data Release: We authorize the release of our submission and author names to the public in the event of acceptance.
Submission Number: 20
Loading