Off-Dynamics Reinforcement Learning: Training for Transfer with Domain ClassifiersDownload PDF

28 Sept 2020, 15:49 (modified: 17 Mar 2021, 02:46)ICLR 2021 PosterReaders: Everyone
Keywords: reinforcement learning, transfer learning, domain adaptation
Abstract: We propose a simple, practical, and intuitive approach for domain adaptation in reinforcement learning. Our approach stems from the idea that the agent's experience in the source domain should look similar to its experience in the target domain. Building off of a probabilistic view of RL, we achieve this goal by compensating for the difference in dynamics by modifying the reward function. This modified reward function is simple to estimate by learning auxiliary classifiers that distinguish source-domain transitions from target-domain transitions. Intuitively, the agent is penalized for transitions that would indicate that the agent is interacting with the source domain, rather than the target domain. Formally, we prove that applying our method in the source domain is guaranteed to obtain a near-optimal policy for the target domain, provided that the source and target domains satisfy a lightweight assumption. Our approach is applicable to domains with continuous states and actions and does not require learning an explicit model of the dynamics. On discrete and continuous control tasks, we illustrate the mechanics of our approach and demonstrate its scalability to high-dimensional~tasks.
One-sentence Summary: We propose a method for addressing domain adaptation in RL by using a (learned) modified reward, and prove that our method recovers a near-optimal policy for the target domain.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
11 Replies