Flatten Graphs as Sequences: Transformers are Scalable Graph Generators

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY-NC-SA 4.0
Keywords: graph generation, transformers, autoregressive modeling, language models, LLMs
TL;DR: A novel autoregressive model for generating attributed graphs using decoder-only transformers.
Abstract: We introduce AutoGraph, a scalable autoregressive model for attributed graph generation using decoder-only transformers. By flattening graphs into random sequences of tokens through a reversible process, AutoGraph enables modeling graphs as sequences without relying on additional node features that are expensive to compute, in contrast to diffusion-based approaches. This results in sampling complexity and sequence lengths that scale optimally linearly with the number of edges, making it scalable and efficient for large, sparse graphs. A key success factor of AutoGraph is that its sequence prefixes represent induced subgraphs, creating a direct link to sub-sentences in language modeling. Empirically, AutoGraph achieves state-of-the-art performance on synthetic and molecular benchmarks, with up to 100x faster generation and 3x faster training than leading diffusion models. It also supports substructure-conditioned generation without fine-tuning and shows promising transferability, bridging language modeling and graph generation to lay the groundwork for graph foundation models. Our code is available at https://github.com/BorgwardtLab/AutoGraph.
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 11007
Loading