PDDFormer: Pairwise Distance Distribution Graph Transformer for Crystal Material Property Prediction

22 Sept 2024 (modified: 13 Dec 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Pairwise Distance Distribution, Graph Transformer, Periodic crystal
TL;DR: We introduced the Pairwise Distance Distribution (PDD) and intra-unit cell PDD for characterizing crystal materials, resolving the ambiguity in crystal structure representation.
Abstract: The crystal structure can be simplified as a periodic point set repeating across the entire three-dimensional space along an underlying lattice. Traditionally, methods for representing crystals rely on descriptors like lattice parameters, symmetry, and space groups to characterize the structure. However, in reality, atoms in material always vibrate above absolute zero, causing continuous fluctuations in their positions. This dynamic behavior disrupts the underlying periodicity of the lattice, making crystal graphs based on static lattice parameters and conventional descriptors discontinuous under even slight perturbations. To this end, chemists proposed the Pairwise Distance Distribution (PDD) method, which has been used to distinguish all periodic structures in the world's largest real materials collection, the Cambridge Structural Database. However, achieving the completeness of PDD requires defining a large number of neighboring atoms, resulting in high computational costs. Moreover, it does not account for atomic information, making it challenging to directly apply PDD to crystal material property prediction tasks. To address these challenges, we propose the atom-Weighted Pairwise Distance Distribution (WPDD) and Unit cell Pairwise Distance Distribution (UPDD) for the first time, incorporating them into the construction of multi-edge crystal graphs. Based on this, we further developed WPDDFormer and UPDDFormer, graph transformer architecture constructed using WPDD and UPDD crystal graphs. We demonstrate that this method maintains the continuity and completeness of crystal graphs even under slight perturbations in atomic positions. Moreover, by modeling PDD as global information and integrating it into matrix-based message passing, we significantly reduced computational costs. Comprehensive evaluation results show that WPDDFormer achieves state-of-the-art predictive accuracy across tasks on benchmark datasets such as the Materials Project and JARVIS-DFT.
Supplementary Material: zip
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2647
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview