SGDF: A Method for Reducing Variance in Stochastic Gradient Descent via Filter Estimation

25 Sept 2024 (modified: 15 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Stochastic Gradient Descent, Gradient Estimation, Generalization
TL;DR: This paper introduces SGDF that combines Wiener filtering with stochastic gradient descent, enhancing deep learning optimization by balancing convergence speed and model generalization.
Abstract: In deep learning, stochastic gradient descent (SGD) and its momentum-based variants are widely used for optimization, but they typically suffer from slow convergence. Conversely, existing adaptive learning rate optimizers speed up convergence but often compromise generalization. To resolve this issue, we propose a novel optimization method designed to accelerate SGD's convergence without sacrificing generalization. Our approach reduces the variance of the historical gradient, improves first-order moment estimation of SGD by applying Wiener filter theory, and introduces a time-varying adaptive gain. Empirical results demonstrate that SGDF (SGD with Filter) effectively balances convergence and generalization compared to state-of-the-art optimizers.
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4781
Loading