Provably Learning Concepts by Comparison

Published: 10 Oct 2024, Last Modified: 25 Dec 2024NeurIPS'24 Compositional Learning Workshop OralEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Concept Learning, Compositional Learning, Interpretability
TL;DR: We establish a set of theoretical guarantees for learning concepts in general settings, without assuming specific concept types, functional relations, or parametric generative models.
Abstract: We are born with the ability to learn concepts by comparing diverse observations. This helps us to understand the new world in a compositional manner and facilitates extrapolation, as objects naturally consist of multiple concepts. In this work, we argue that the cognitive mechanism of comparison, fundamental to human learning, is also vital for machines to recover true concepts underlying the data. This offers correctness guarantees for the field of concept learning, which, despite its impressive empirical successes, still lacks general theoretical support. Specifically, we aim to develop a theoretical framework for the identifiability of concepts with multiple classes of observations. We show that with sufficient diversity across classes, hidden concepts can be identified without assuming specific concept types, functional relations, or parametric generative models. Interestingly, even when conditions are not globally satisfied, we can still provide alternative guarantees for as many concepts as possible based on local comparisons, thereby extending the applicability of our theory to more flexible scenarios. Moreover, the hidden structure between classes and concepts can also be identified nonparametrically. We validate our theoretical results in both synthetic and real-world settings.
Submission Number: 17
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview