Ito Diffusion Approximation of Universal Ito Chains for Sampling, Optimization and Boosting

Published: 16 Jan 2024, Last Modified: 13 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: markov chains, diffusion processes
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: Approximating General Markov Chains by Diffusion Processes without assuming Gaussian noise.
Abstract: In this work, we consider rather general and broad class of Markov chains, Ito chains, that look like Euler-Maryama discretization of some Stochastic Differential Equation. The chain we study is a unified framework for theoretical analysis. It comes with almost arbitrary isotropic and state-dependent noise instead of normal and state-independent one as in most related papers. Moreover, in our chain the drift and diffusion coefficient can be inexact in order to cover wide range of applications as Stochastic Gradient Langevin Dynamics, sampling, Stochastic Gradient Descent or Stochastic Gradient Boosting. We prove the bound in $\mathcal{W}_{2}$-distance between the laws of our Ito chain and corresponding differential equation. These results improve or cover most of the known estimates. And for some particular cases, our analysis is the first.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: optimization
Submission Number: 8195
Loading