Transfer NAS with Meta-learned Bayesian SurrogatesDownload PDF

Published: 21 Oct 2022, Last Modified: 05 May 2023NeurIPS 2022 Workshop MetaLearn PosterReaders: Everyone
Abstract: While neural architecture search (NAS) is an intensely-researched area, approaches typically still suffer from either (i) high computational costs or (ii) lack of robustness across datasets and experiments. Furthermore, most methods start searching for an optimal architecture from scratch, ignoring prior knowledge. This is in contrast to the manual design process by researchers and engineers that leverage previous deep learning experiences by, e.g., transferring architectures from previously solved, related problems. We propose to adopt this human design strategy and introduce a novel surrogate for NAS, that is meta-learned across prior architecture evaluations across different datasets. We utilize Bayesian Optimization (BO) with deep-kernel Gaussian Processes, graph neural networks for the architecture embeddings and a transformer-based set encoder of datasets. As a result, our method consistently achieves state-of-the-art results on six computer vision datasets, while being as fast as one-shot NAS methods.
0 Replies

Loading