Using Interleaved Ensemble Unlearning to Keep Backdoors at Bay for Finetuning Vision Transformers

26 Sept 2024 (modified: 22 Jan 2025)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Vision Transformer, Backdoor Defence
TL;DR: We present and evaluate a novel backdoor defence strategy designed specifically for Vision Transformers called Interleaved Ensemble Unlearning.
Abstract: Vision Transformers (ViTs) have become popular in computer vision tasks. Backdoor attacks, which trigger undesirable behaviours in models during inference, threaten ViTs' performance, particularly in security-sensitive tasks. Although backdoor defences have been developed for Convolutional Neural Networks (CNNs), they are less effective for ViTs, and defences tailored to ViTs are scarce. To address this, we present Interleaved Ensemble Unlearning (IEU), a method for finetuning clean ViTs on backdoored datasets. In stage 1, a shallow ViT is finetuned to have high confidence on backdoored data and low confidence on clean data. In stage 2, the shallow ViT acts as a "gate" to block potentially poisoned data from the defended ViT. This data is added to an unlearn set and asynchronously unlearnt via gradient ascent. We demonstrate IEU's effectiveness on three datasets against 11 state-of-the-art backdoor attacks and show its versatility by applying it to different model architectures.
Primary Area: other topics in machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7700
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview