Block Verification Accelerates Speculative Decoding

Published: 22 Jan 2025, Last Modified: 02 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: llm efficiency, speculative decoding, distribution coupling
Abstract: Speculative decoding is an effective method for lossless acceleration of large language models during inference. It uses a fast model to draft a block of tokens which are then verified in parallel by the target model, and provides a guarantee that the output is distributed identically to a sample from the target model. In prior works, draft verification is performed independently token-by-token. Surprisingly, we show that this approach is not optimal. We propose *Block Verification*, a simple draft verification algorithm that verifies the entire block jointly and provides additional wall-clock speedup. We prove that the proposed mechanism is optimal in the expected number of tokens produced each iteration and specifically is never worse than the standard token-level verification. Empirically, block verification provides modest but consistent wall-clock speedups over the standard token verification algorithm of 5\%-8\% in a range of tasks and datasets. Given that block verification does not increase code complexity, maintains the strong lossless guarantee of the standard speculative decoding verification algorithm, cannot deteriorate performance, and, in fact, consistently improves it, it can be used as a good default in speculative decoding implementations.
Primary Area: learning theory
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8473
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview