Tensor-Var: Variational Data Assimilation in Tensor Product Feature Space

27 Sept 2024 (modified: 31 Jan 2025)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Variational Data Assimilation, Dynamical System, Weather Forecasting, Representation Learning
Abstract: Variational data assimilation estimates the dynamical system states by minimizing a cost function that fits the numerical models with observational data. The widely used method, four-dimensional variational assimilation (4D-Var), has two primary challenges: (1) computationally demanding for complex nonlinear systems, and (2) relying on state-observation mappings, which are often impractical. Deep learning (DL) has been used as a more expressive class of efficient model approximators to address these challenges. However, integrating such models into 4D-Var remains challenging due to their inherent nonlinearities and the lack of theoretical guarantees for consistency in assimilation results. In this paper, we propose *Tensor-Var* to address these challenges using kernel Conditional Mean Embedding (CME). Tensor-Var improves optimization efficiency by characterizing system dynamics and state-observation mappings as linear operators, leading to a convex cost function in the feature space. Furthermore, our method provides a new perspective to incorporate CME into 4D-Var, offering theoretical guarantees of consistent assimilation results between the original and feature spaces. To improve scalability, we propose a method to learn deep features (DFs) using neural networks within the Tensor-Var framework. Experiments on chaotic systems and global weather prediction with real-time observations show that Tensor-Var outperforms conventional and DL hybrid 4D-Var baselines in accuracy while achieving efficiency comparable to the static 3D-Var method.
Primary Area: learning on time series and dynamical systems
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11211
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview