CL-MFAP: A contrastive learning-based multimodal foundation model for antibiotic property prediction

ICLR 2025 Conference Submission12828 Authors

28 Sept 2024 (modified: 28 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Contrastive Learning, Multimodal Foundation Model, Antibiotic Property Prediction, Bi-level Routing Attention, Transformer
Abstract: Due to the rise in antimicrobial resistance, identifying novel compounds with antibiotic potential is crucial for combatting this global health issue. However, traditional drug development methods are costly and inefficient. Recognizing the pressing need for more effective solutions, researchers have turned to machine learning techniques to streamline the prediction and development of novel antibiotic compounds. While foundation models have shown promise in antibiotic discovery, current mainstream efforts still fall short of fully leveraging the potential of multimodal molecular data. Recent studies suggest that contrastive learning frameworks utilizing multimodal data exhibit excellent performance in representation learning across various domains. Building upon this, we introduce CL-MFAP, an unsupervised contrastive learning (CL)-based multimodal foundation (MF) model specifically tailored for discovering small molecules with potential antibiotic properties (AP) using three types of molecular data. This model employs 1.6 million bioactive molecules with drug-like properties from the ChEMBL dataset to jointly pretrain three encoders: (1) a transformer-based encoder with rotary position embedding for processing SMILES strings; (2) another transformer-based encoder, incorporating a novel bi-level routing attention mechanism to handle molecular graph representations; and (3) a Morgan fingerprint encoder using a multilayer perceptron, to achieve the contrastive learning purpose. The CL-MFAP outperforms baseline models in antibiotic property prediction by effectively utilizing different molecular modalities and demonstrates superior domain-specific performance when fine-tuned for antibiotic-related property prediction tasks.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12828
Loading