Keywords: Mamba, State-space Model, Time Series
TL;DR: We propose SOR-Mamba, a time series forecasting method that uses Mamba with regularization to address the sequential order bias in capturing channel dependencies.
Abstract: Mamba has recently emerged as a promising alternative to Transformers, offering near-linear complexity in processing sequential data.
However, while channels in time series (TS) data have no specific order in general, recent studies have adopted Mamba to capture channel dependencies (CD) in TS, introducing a sequential order bias. To address this issue, we propose SOR-Mamba, a TS forecasting method that 1) incorporates a regularization strategy to minimize the discrepancy between two embedding vectors generated from data with reversed channel orders, thereby enhancing robustness to channel order, and 2) eliminates the 1D-convolution originally designed to capture local information in sequential data. Furthermore, we introduce channel correlation modeling (CCM), a pretraining task aimed at preserving correlations between channels from the data space to the latent space in order to enhance the ability to capture CD.
Extensive experiments demonstrate the efficacy of the proposed method across standard and transfer learning scenarios.
Supplementary Material: zip
Primary Area: learning on time series and dynamical systems
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 69
Loading