Differential Information Distribution: A Bayesian Perspective on Direct Preference Optimization

ICLR 2026 Conference Submission21912 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Direct Preference Optimization, Alignment, LLM
TL;DR: We present a Bayesian perspective on Direct Preference Optimization, showing that its reward design, training dynamics, and downstream performance naturally follow from how preferences encode Differential Information.
Abstract: Direct Preference Optimization (DPO) has been widely used for aligning language models with human preferences in a supervised manner. However, several key questions remain unresolved: the rationale behind its log-ratio reward, how the statistical structure of preference datasets shapes its training dynamics, and how those dynamics impact downstream capabilities. We approach these questions from a Bayesian perspective, interpreting the goal of preference optimization as learning the differential information required to update a reference policy into a target policy. To formalize this view, we introduce the Differential Information Distribution (DID), defined as the distribution over samples that carry the Bayesian evidence required to update policies. We introduce three complementary insights by viewing preference optimization through the DID. First, we find that DPO's log-ratio reward is uniquely justified when preferences encode the Differential Information needed to update a reference policy into the target policy. Second, we discuss how commonly observed training dynamics in DPO, including changes in log-likelihood and policy exploration, stem from a power-law DID relationship. Finally, we analyze how training dynamics influence downstream performance using the entropy of DID, a principled measure of uncertainty in the learned information. We observe that learning high-entropy DID improves open-ended instruction-following, while low-entropy DID benefits knowledge-intensive QA. Taken together, our results show that DPO’s reward design, training dynamics, and downstream capabilities all emerge as natural consequences of learning Differential Information, offering both a principled theoretical foundation and practical guidance for preference-based alignment.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Submission Number: 21912
Loading