Cloud4D: Estimating Cloud Properties at a High Spatial and Temporal Resolution

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 spotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: AI for Science, Computer Vision, Climate Change, 3D Reconstruction
TL;DR: Use ground-based cameras to retrieve physical properties of clouds at a high spatial and temporal resolution.
Abstract: There has been great progress in improving numerical weather prediction and climate models using machine learning. However, most global models act at a kilometer-scale, making it challenging to model individual clouds and factors such as extreme precipitation, wind gusts, turbulence, and surface irradiance. Therefore, there is a need to move towards higher-resolution models, which in turn require high-resolution real-world observations that current instruments struggle to obtain. We present Cloud4D, the first learning-based framework that reconstructs a physically consistent, four–dimensional cloud state using only synchronized ground‐based cameras. Leveraging a homography-guided 2D‐to‐3D transformer, Cloud4D infers the full 3D distribution of liquid water content at 25 m spatial and 5 s temporal resolution. By tracking the 3D liquid water content retrievals over time, Cloud4D additionally estimates horizontal wind vectors. Across a two-month deployment comprising six skyward cameras, our system delivers an order-of-magnitude improvement in space-time resolution relative to state-of-the-art satellite measurements, while retaining single-digit relative error ($<10\\%$) against collocated radar measurements.
Primary Area: Machine learning for sciences (e.g. climate, health, life sciences, physics, social sciences)
Submission Number: 3939
Loading