Keywords: Two-Sided Matching, User Retention, Learning-to-Rank
Abstract: On two-sided matching platforms such as online dating and recruiting, recommendation algorithms often aim to maximize the total number of matches. However, this objective creates an imbalance, where some users receive far too many matches while many others receive very few and eventually abandon the platform. Retaining users is crucial for many platforms, such as those that depend heavily on subscriptions. Some may use fairness objectives to solve the problem of match maximization. However, fairness in itself is not the ultimate objective for many platforms, as users do not suddenly reward the platform simply because exposure is equalized. In practice, where user retention is often the ultimate goal, casually relying on fairness will leave the optimization of retention up to luck.
In this work, instead of maximizing matches or axiomatically defining fairness, we formally define the new problem setting of maximizing user retention in two-sided matching platforms. To this end, we introduce a dynamic learning-to-rank (LTR) algorithm called Matching for Retention (MRet). Unlike conventional algorithms for two-sided matching, our approach models user retention by learning personalized retention curves from each user’s profile and interaction history. Based on these curves, MRet dynamically adapts recommendations by jointly considering the retention gains of both the user receiving recommendations and those who are being recommended, so that limited matching opportunities can be allocated where they most improve overall retention. Naturally but importantly, empirical evaluations on synthetic and real-world datasets from a major online dating platform show that MRet achieves higher user retention, since conventional methods optimize matches or fairness rather than retention.
Supplementary Material: zip
Primary Area: optimization
Submission Number: 19436
Loading