Barriers for Learning in an Evolving World: Mathematical Understanding of Loss of Plasticity

ICLR 2026 Conference Submission17474 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: loss of plasticity, deep learning theory, continual learning
Abstract: Deep learning models excel in stationary data but struggle in non-stationary environments due to a phenomenon known as loss of plasticity (LoP), the degradation of their ability to learn in the future. This work presents a first-principles investigation of LoP in gradient-based learning. Grounded in dynamical systems theory, we formally define LoP by identifying stable manifolds in the parameter space that trap gradient trajectories. Our analysis reveals two primary mechanisms that create these traps: frozen units from activation saturation and cloned-unit manifolds from representational redundancy. Our framework uncovers a fundamental tension: properties that promote generalization in static settings, such as low-rank representations and simplicity biases, directly contribute to LoP in continual learning scenarios. We validate our theoretical analysis with numerical simulations and explore architectural choices or targeted perturbations as potential mitigation strategies.
Supplementary Material: zip
Primary Area: learning theory
Submission Number: 17474
Loading