MultiConIR: Towards Multi-Condition Information Retrieval

ACL ARR 2025 May Submission6653 Authors

20 May 2025 (modified: 03 Jul 2025)ACL ARR 2025 May SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Multi-condition information retrieval (IR) presents a significant, yet underexplored challenge for existing systems. This paper introduces MultiConIR, the first benchmark specifically designed to evaluate retrieval and reranking models under nuanced multi-condition query scenarios across five diverse domains. We systematically assess model capabilities through three critical tasks: complexity robustness, relevance monotonicity, and query format sensitivity. Our extensive experiments on 15 models reveal a critical vulnerability: most retrievers and rerankers exhibit severe performance degradation as query complexity increases. Key deficiencies include widespread failure to maintain relevance monotonicity, and high sensitivity to query style and condition placement. The superior performance GPT-4o reveals the performance gap between IR systems and advanced LLM for handling sophisticated natural language queries. Furthermore, this work delves into the factors contributing to reranker performance deterioration and examines how condition positioning within queries affects similarity assessment, providing crucial insights for advancing IR systems towards complex search scenarios.
Paper Type: Long
Research Area: Information Retrieval and Text Mining
Research Area Keywords: retrieval; dense retrieval
Contribution Types: Model analysis & interpretability, Data resources
Languages Studied: English
Submission Number: 6653
Loading