Keywords: Histopathology, Multiple Instance Learning, Domain adaptation, Parameter-efficient fine-tuning
Abstract: Computational methods on analyzing Whole Slide Images (WSIs) enable early diagnosis and treatments by supporting pathologists in detection and classification of tumors. However, the extremely high resolution of WSIs makes end-to-end training impractical compared to typical image analysis tasks. To address this, most approaches use pre-trained feature extractors to obtain fixed representations of whole slides, which are then combined with Multiple Instance Learning (MIL) for downstream tasks. These feature extractors are typically pre-trained on natural image datasets such as ImageNet, which fail to capture domain-specific characteristics. Although domain-specific pre-training on histopathology data yields more relevant feature representations, it remains computationally expensive and fail to capture task-specific characteristics within the domain. To address the computational cost and lack of task-specificity in domain-specific pre-training, we propose EfficientWSI (eWSI), a careful integration of Parameter-Efficient-Fine-Tuning (PEFT) and Multiple Instance Learning (MIL) that enables end-to-end training on WSI tasks. We evaluate eWSI on seven WSI-level tasks over Camelyon16, TCGA and BRACS datasets. Our results show that eWSI when applied with ImageNet feature extractors yields strong classification performance, matching or outperforming MILs with in-domain feature extractors, alleviating the need for extensive in-domain pre-training. Furthermore, when eWSI is applied with in-domain feature extractors, it further improves classification performance in most cases, demonstrating its ability to capture task-specific information where beneficial. Our findings suggest that eWSI provides a task-targeted, computationally efficient path for WSI tasks, offering a promising direction for task-specific learning in computational pathology.
Primary Subject Area: Application: Histopathology
Secondary Subject Area: Transfer Learning and Domain Adaptation
Registration Requirement: Yes
Visa & Travel: Yes
Read CFP & Author Instructions: Yes
Originality Policy: Yes
Single-blind & Not Under Review Elsewhere: Yes
LLM Policy: Yes
Submission Number: 103
Loading