Keywords: Large Language Models, Intellectual Property, Benchmark
Abstract: Intellectual Property (IP) is a highly specialized domain that integrates technical and legal knowledge, making it inherently complex and knowledge-intensive. Recent advancements in LLMs have demonstrated their potential to handle IP-related tasks, enabling more efficient analysis, understanding, and generation of IP-related content. However, existing datasets and benchmarks focus narrowly on patents or cover limited aspects of the IP field, lacking alignment with real-world scenarios. To bridge this gap, we introduce **IPBench**, the first comprehensive IP task taxonomy and a large-scale bilingual benchmark encompassing **8 IP mechanisms and 20 distinct tasks**, designed to evaluate LLMs in real-world IP scenarios. We benchmark **17 main LLMs**, ranging from general purpose to domain-specific, including chat-oriented and reasoning-focused models, under zero-shot, few-shot, and chain-of-thought settings. Our results show that even the top-performing model, DeepSeek-V3, achieves only 75.8% accuracy, indicating significant room for improvement. Notably, open-source IP and law-oriented models lag behind closed-source general-purpose models. To foster future research, we publicly release IPBench, and will expand it with additional tasks to better reflect real-world complexities and support model advancements in the IP domain. We provide the data and code in the supplementary materials.
Supplementary Material: zip
Primary Area: datasets and benchmarks
Submission Number: 6607
Loading