Out-of-distribution Representation Learning for Time Series ClassificationDownload PDF

Published: 01 Feb 2023, Last Modified: 29 Sept 2024ICLR 2023 posterReaders: Everyone
Keywords: Domain generalization, out-of-distribution generalization, time series classification
Abstract: Time series classification is an important problem in the real world. Due to its non-stationary property that the distribution changes over time, it remains challenging to build models for generalization to unseen distributions. In this paper, we propose to view time series classification from the distribution perspective. We argue that the temporal complexity of a time series dataset could attribute to unknown latent distributions that need characterize. To this end, we propose DIVERSIFY for out-of-distribution (OOD) representation learning on dynamic distributions of times series. DIVERSIFY takes an iterative process: it first obtains the ‘worst-case’ latent distribution scenario via adversarial training, then reduces the gap between these latent distributions. We then show that such an algorithm is theoretically supported. Extensive experiments are conducted on seven datasets with different OOD settings across gesture recognition, speech commands recognition, wearable stress and affect detection, and sensor-based human activity recognition. Qualitative and quantitative results demonstrate that DIVERSIFY significantly outperforms other baselines and effectively characterizes the latent distributions. Code is available at https://github.com/microsoft/robustlearn.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
TL;DR: We present a novel perspective on time series classification and present algorithms and theory to solve it, with solid experiments.
Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/out-of-distribution-representation-learning/code)
21 Replies

Loading