Imposing conservation properties in deep dynamics modeling via contrastive learningDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: dynamical system modeling, contrastive learning, learning conservation property
Abstract: Deep neural networks (DNN) has shown great capacity of modeling a dynamical system, but these DNN-based dynamical models usually do not obey conservation laws. To impose the learned DNN dynamical models with key physical properties such as conservation laws, this paper proposes a two-step approach to endow the invariant priors into the simulations. We first establish a contrastive learning framework to capture the system invariants along the trajectory observations. During the dynamics modeling, we design a projection layer of DNNs to preserve the system invariance. Through experiments, we show our method consistently outperforms the baseline in both coordinate error and conservation metrics and can be further extended to complex and large dynamics by leveraging autoencoder. Notably, a byproduct of our framework is the automated conservation law discovery for dynamical systems with single conservation property.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Machine Learning for Sciences (eg biology, physics, health sciences, social sciences, climate/sustainability )
TL;DR: We learn dynamical system conservation property through contrastive learning and impose it during simulation to improve prediction robustness.
Supplementary Material: zip
37 Replies

Loading