Object2Scene: Putting Objects in Context for Open-Vocabulary 3D Detection

21 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: representation learning for computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: open vocabulary 3d detection, 3d detection, contrastive learning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Point cloud-based open-vocabulary 3D object detection aims to detect 3D categories that do not have ground-truth annotations in the training set. It is extremely challenging because of the limited data and annotations (bounding boxes with class labels or text descriptions) of 3D scenes. Previous approaches leverage large-scale richly-annotated image datasets as a bridge between 3D and category semantics but require an extra alignment process between 2D images and 3D points, limiting the open-vocabulary ability of 3D detectors. Instead of leveraging 2D images, we propose Object2Scene, the first approach that leverages large-scale large-vocabulary 3D object datasets to augment existing 3D scene datasets for open-vocabulary 3D object detection. Object2Scene inserts objects from different sources into 3D scenes to enrich the vocabulary of 3D scene datasets and generates text descriptions for the newly inserted objects. We further introduce a framework that unifies 3D detection and visual grounding, named L3Det, and propose a cross-domain object-level contrastive learning approach to mitigate the domain gap between 3D objects from different datasets. Extensive experiments on existing open-vocabulary 3D object detection benchmarks show that Object2Scene obtains superior performance over existing methods. We further verify the effectiveness of Object2Scene on a new benchmark OV-ScanNet-200, by holding out all rare categories as novel categories not seen during training.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3112
Loading