Learning Concept Bottleneck Models from Mechanistic Explanations

ICLR 2026 Conference Submission20751 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: interpretability, concept bottleneck models, computer vision, explainable ai
TL;DR: We propose a novel CBM pipeline, namely M-CBM, that uses mechanistic interpretability to learn concepts directly from its black-box counterpart.
Abstract: Concept Bottleneck Models (CBMs) aim for ante-hoc interpretability by learning a bottleneck layer that predicts interpretable concepts before the decision. State-of-the-art approaches typically select which concepts to learn via human specification, open knowledge graphs, prompting an LLM, or using general CLIP concepts. However, concepts defined a-priori may not have sufficient predictive power for the task or even be learnable from the available data. As a result, these CBMs often significantly trail their black-box counterpart when controlling for information leakage. To address this, we introduce a novel CBM pipeline named Mechanistic CBM (M-CBM), which builds the bottleneck directly from a black-box model’s own learned concepts. These concepts are extracted via Sparse Autoencoders (SAEs) and subsequently named and annotated on a selected subset of images using a Multimodal LLM. For fair comparison and leakage control, we also introduce the Number of Contributing Concepts (NCC), a decision-level sparsity metric that extends the recently proposed NEC metric. Across diverse datasets, we show that M-CBMs consistently surpass prior CBMs at matched sparsity, while improving concept predictions and providing concise explanations. Our code is available at https://anonymous.4open.science/r/M-CBM-85D9.
Primary Area: interpretability and explainable AI
Submission Number: 20751
Loading