Learning without Prejudices: Continual Unbiased Learning via Benign and Malignant ForgettingDownload PDF

Published: 01 Feb 2023, Last Modified: 28 Feb 2023ICLR 2023 posterReaders: Everyone
Keywords: representation learning, continual learning, unbiased learning
TL;DR: We propose a novel method, coined Learning without Prejudices, that encourages benign forgetting and regularizes malignant forgetting for continual unbiased learning.
Abstract: Although machine learning algorithms have achieved state-of-the-art status in image classification, recent studies have substantiated that the ability of the models to learn several tasks in sequence, termed continual learning (CL), often suffers from abrupt degradation of performance from previous tasks. A large body of CL frameworks has been devoted to alleviating this issue. However, we observe that forgetting phenomena in CL are not always unfavorable, especially when there is bias (spurious correlation) in training data. We term such type of forgetting benign forgetting, and categorize detrimental forgetting as malignant forgetting. Based on this finding, our objective in this study is twofold: (a) to discourage malignant forgetting by generating previous representations, and (b) encourage benign forgetting by employing contrastive learning in conjunction with feature-level augmentation. Extensive evaluations of biased experimental setups demonstrate that our proposed method, Learning without Prejudices, is effective for continual unbiased learning.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Supplementary Material: zip
15 Replies