Keywords: Image geo-localization, location encoding, diffusion
Abstract: Image geolocalization is a fundamental yet challenging task, aiming at inferring the geolocation on Earth where an image is taken. State-of-the-art methods employ either grid-based classification or gallery-based image-location retrieval, whose spatial generalizability significantly suffers if the spatial distribution of test images does not align with the choices of grids and galleries. Recently emerging generative approaches, while getting rid of grids and galleries, use raw geographical coordinates and suffer quality losses due to their lack of multi-scale information. To address these limitations, we propose a multi-scale latent diffusion model called LocDiff for image geolocalization. We developed a novel positional encoding-decoding framework called Spherical Harmonics Dirac Delta (SHDD) Representations, which encodes points on a spherical surface (e.g., geolocations on Earth) into a Hilbert space of Spherical Harmonics coefficients and decodes points (geolocations) by mode-seeking on spherical probability distributions. We also propose a novel SirenNet-based architecture (CS-UNet) to learn an image-based conditional backward process in the latent SHDD space by minimizing a latent KL-divergence loss. To the best of our knowledge, LocDiff is the first image geolocalization model that performs latent diffusion in a multi-scale location encoding space and generates geolocations under the guidance of images. Experimental results show that LocDiff can outperform all state-of-the-art grid-based, retrieval-based, and diffusion-based baselines across 5 challenging global-scale image geolocalization datasets, and demonstrates significantly stronger generalizability to unseen geolocations.
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 22546
Loading