Learning to Adapt: In-Context Learning Beyond Stationarity

ICLR 2026 Conference Submission20616 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: in-context learning, gated linear attention, non-stationary regression
Abstract: Transformer models have become foundational across a wide range of scientific and engineering domains due to their strong empirical performance. A key capability underlying their success is in-context learning (ICL): when presented with a short prompt from an unseen task, transformers can perform per-token and next-token predictions without any parameter updates. Recent theoretical efforts have begun to uncover the mechanisms behind this phenomenon, particularly in supervised regression settings. However, these analyses predominantly assume stationary task distributions, which overlook a broad class of real-world scenarios where the target function varies over time. In this work, we bridge this gap by providing a theoretical analysis of ICL under non-stationary regression problems. We study how the gated linear attention (GLA) mechanism adapts to evolving input-output relationships and rigorously characterize its advantages over standard linear attention in this dynamic setting. To model non-stationarity, we adopt a first-order autoregressive process and show that GLA achieves lower training and testing errors by adaptively modulating the influence of past inputs--effectively implementing a learnable recency bias. Our theoretical findings are further supported by empirical results, which validate the benefits of gating mechanisms in non-stationary ICL tasks.
Supplementary Material: zip
Primary Area: optimization
Submission Number: 20616
Loading