Keywords: Scaling Laws, Reinforcement Learning, Zipf's Law
TL;DR: We show evidence that LLM scaling theory, connecting Zipf's law to scaling laws, applies to AlphaZero scaling.
Abstract: Neural scaling laws are observed in a range of domains, to date with no clear understanding of why they occur. Recent theories suggest that loss power laws arise from Zipf's law, a power law observed in domains like natural language. One theory suggests that language scaling laws emerge when Zipf-distributed task quanta are learned in descending order of frequency. In this paper we examine power-law scaling in AlphaZero, a reinforcement learning algorithm, using a theory of language-model scaling. We find that game states in training and inference data scale with Zipf's law, which is known to arise from the tree structure of the environment, and examine the correlation between scaling-law and Zipf's-law exponents. In agreement with quanta scaling theory, we find that agents optimize state loss in descending order of frequency, even though this order scales inversely with modelling complexity. We also find that inverse scaling, the failure of models to improve with size, is correlated with unusual Zipf curves where end-game states are among the most frequent states. We show evidence that larger models shift their focus to these less-important states, sacrificing their understanding of important early-game states.
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3677
Loading