GC4NC: A Benchmark Framework for Graph Condensation on Node Classification with New Insights

ICLR 2025 Conference Submission12883 Authors

28 Sept 2024 (modified: 19 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Graph condensation, Dataset distillation, Dataset condensation, Graph neural network
TL;DR: We establish a benchmark, exploring diverse aspects including scalability, NAS, data initialization, privacy preservation, graph property preservation, and robustness of recent graph condensation methods.
Abstract: Graph condensation (GC) is an emerging technique designed to learn a significantly smaller graph that retains the essential information of the original graph. This condensed graph has shown promise in accelerating graph neural networks while preserving performance comparable to those achieved with the original, larger graphs. Additionally, this technique facilitates downstream applications like neural architecture search and deepens our understanding of redundancies in large graphs. Despite the rapid development of GC methods, particularly for node classification, a unified evaluation framework is still lacking to systematically compare different GC methods or clarify key design choices for improving their effectiveness. To bridge these gaps, we introduce **GC4NC**, a comprehensive framework for evaluating diverse GC methods on node classification across multiple dimensions including performance, efficiency, privacy preservation, denoising ability, NAS effectiveness, and transferability. Our systematic evaluation offers novel insights into how condensed graphs behave and the critical design choices that drive their success. These findings pave the way for future advancements in GC methods, enhancing both performance and expanding their real-world applications. The code is available at https://anonymous.4open.science/r/GC4NC-1620.
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12883
Loading