VisionGraph: Leveraging Large Multimodal Models for Graph Theory Problems in Visual Context

Published: 02 May 2024, Last Modified: 25 Jun 2024ICML 2024 PosterEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Large Multimodal Models (LMMs) have achieved impressive success in visual reasoning, particularly in visual mathematics. However, problem-solving capabilities in graph theory remain less explored for LMMs, despite being a crucial aspect of mathematical reasoning that requires an accurate understanding of graphical structures and multi-step reasoning on visual graphs. To step forward in this direction, we are the first to design a benchmark named **VisionGraph**, used to explore the capabilities of advanced LMMs in solving multimodal graph theory problems. It encompasses eight complex graph problem tasks, from connectivity to shortest path problems. Subsequently, we present a Description-Program-Reasoning (DPR) chain to enhance the logical accuracy of reasoning processes through graphical structure description generation and algorithm-aware multi-step reasoning. Our extensive study shows that 1) GPT-4V outperforms Gemini Pro in multi-step graph reasoning; 2) All LMMs exhibit inferior perception accuracy for graphical structures, whether in zero/few-shot settings or with supervised fine-tuning (SFT), which further affects problem-solving performance; 3) DPR significantly improves the multi-step graph reasoning capabilities of LMMs and the GPT-4V (DPR) agent achieves SOTA performance.
Submission Number: 7891
Loading