Minimal Variance Model Aggregation: A principled, non-intrusive, and versatile integration of black box models

Published: 22 Jan 2025, Last Modified: 02 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Model aggregation; Ensemble Learning; Scientific Machine Learning; Gaussian Processes; Neural operators
TL;DR: We present a general framework to combine existing models in a robust manner. Our method is flexible, places few assumptions on the models aggregated, and performs well in our experiments.
Abstract: Whether deterministic or stochastic, models can be viewed as functions designed to approximate a specific quantity of interest. We introduce Minimal Empirical Variance Aggregation (MEVA), a data-driven framework that integrates predictions from various models, enhancing overall accuracy by leveraging the individual strengths of each. This non-intrusive, model-agnostic approach treats the contributing models as black boxes and accommodates outputs from diverse methodologies, including machine learning algorithms and traditional numerical solvers. We advocate for a point-wise linear aggregation process and consider two methods for optimizing this aggregate: Minimal Error Aggregation (MEA), which minimizes the prediction error, and Minimal Variance Aggregation (MVA), which focuses on reducing variance. We prove a theorem showing that MVA can be more robustly estimated from data than MEA, making MEVA superior to Minimal Empirical Error Aggregation (MEEA). Unlike MEEA, which interpolates target values directly, MEVA formulates aggregation as an error estimation problem, which can be performed using any backbone learning paradigm. We demonstrate the versatility and effectiveness of our framework across various applications, including data science and partial differential equations, illustrating its ability to significantly enhance both robustness and accuracy.
Primary Area: probabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4795
Loading