Keywords: Neural Combinatorial Optimization, Travelling salesman problem
Abstract: Despite the rich works on machine learning (ML) for combinatorial optimization (CO), a unified, principled framework remains lacking. This study utilizes the Travelling Salesman Problem (TSP) as a major case study, with adaptations demonstrated for other CO problems, dissecting established mainstream learning-based solvers to outline a comprehensive design space. It advances a unified modular streamline incorporating existing technologies in both learning and search for transparent ablation, aiming to reassess the role of learning and to discern which parts of existing techniques are genuinely beneficial and which are not. This further leads to the investigation of desirable principles of learning designs and the exploration of concepts guiding method designs. We demonstrate the desirability of principles such as joint probability estimation, symmetry solution representation, and online optimization for learning-based designs. Leveraging the findings, we propose enhancements to existing methods to compensate for their missing attributes, thereby advancing performance and enriching the technique library. From a higher viewpoint, we also uncover a performance advantage in non-autoregressive and supervised paradigms compared to their counterparts. The strategic decoupling and organic recompositions yield a factory of new TSP solvers, where we investigate synergies across various method combinations and pinpoint the optimal design choices to create more powerful ML4TSP solvers, thereby facilitating and offering a reference for future research and engineering endeavors.
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6210
Loading