Hindsight Planner: A Closed-loop few-shot planner for Embodied Instruction Following

26 Sept 2024 (modified: 14 Oct 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: LLM, Embodied Instruction Following (EIF), Agent, ALFRED
TL;DR: We view the ALFRED environment as a POMDP process and propose a novel hindsight method that achieves state-of-the-art performance under the few-shot assumption.
Abstract: This work focuses on building a task planner for Embodied Instruction Following (EIF) using Large Language Models (LLMs). Previous works typically train a planner to imitate expert trajectories, treating this as a supervised task. While these methods achieve competitive performance, they often lack sufficient robustness. When encountering a suboptimal action, the planner may encounter an out-of-distribution state, which can lead to task failure. In contrast, we frame the task as a Partially Observable Markov Decision Process (POMDP) and aim to develop a robust planner under a few-shot assumption. Thus, we propose a closed-loop planner with an adaptation module and a novel hindsight method, aiming to use as much information as possible to assist the planner. Our experiments on the ALFRED dataset indicate that our planner achieves competitive performance under a few-shot assumption. For the first time, our few-shot agent's performance approaches and even surpasses that of the full-shot supervised agent.
Supplementary Material: zip
Primary Area: applications to robotics, autonomy, planning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7478
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview