On the (Non-)Robustness of Two-Layer Neural Networks in Different Learning RegimesDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: robustness, adversarial robustness, over-parametrization, lazy training, parent-student, regression
TL;DR: Tradeoffs between test-error and robustness for 2-layer neural networks in different learning regimes (RF, lazy training, SGD)
Abstract: Neural networks are known to be highly sensitive to adversarial examples. These may arise due to different factors, such as random initialization, or spurious correlations in the learning problem. To better understand these factors, we provide a precise study of the adversarial robustness in different scenarios, from initialization to the end of training in different regimes, as well as intermediate scenarios where initialization still plays a role due to “lazy” training. We consider over-parameterized networks in high dimensions with quadratic targets and infinite samples. Our analysis allows us to identify new tradeoffs between approximation (as measured via test error) and robustness, whereby robustness can only get worse when test error improves, and vice versa. We also show how linearized lazy training regimes can worsen robustness, due to improperly scaled random initialization. Our theoretical results are illustrated with numerical experiments.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Supplementary Material: zip
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Theory (eg, control theory, learning theory, algorithmic game theory)
21 Replies