Keywords: Materials Science, Invariant Networks, Transformer, Physics-Informed ML
TL;DR: Propose dynamic atom-wise frames aligned with attention-based interatomic interactions on the structure, rather than with the structure itself.
Abstract: Crystal structure modeling with graph neural networks is essential for various applications in materials informatics, and capturing SE(3)-invariant geometric features is a fundamental requirement for these networks. A straightforward approach is to model with orientation-standardized structures through structure-aligned coordinate systems, or “frames.” However, unlike molecules, determining frames for crystal structures is challenging due to their infinite and highly symmetric nature. In particular, existing methods rely on a statically fixed frame for each structure, determined solely by its structural information, regardless of the task under consideration. Here, we rethink the role of frames, *questioning whether such simplistic alignment with the structure is sufficient*, and propose the concept of *dynamic frames*. While accommodating the infinite and symmetric nature of crystals, these frames provide each atom with a dynamic view of its local environment, focusing on actively interacting atoms. We demonstrate this concept by utilizing the attention mechanism in a recent transformer-based crystal encoder, resulting in a new architecture called **CrystalFramer**. Extensive experiments show that CrystalFramer outperforms conventional frames and existing crystal encoders in various crystal property prediction tasks.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5622
Loading