Lost-in-Distance: Impact of Contextual Proximity on LLM Performance in Graph Tasks

27 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Large Language Models, Graph Tasks, Long Context
TL;DR: Demonstrating how LLMs performance impacted by relativce distance between information in the
Abstract: Despite significant advancements, Large Language Models (LLMs) exhibit blind spots that impair their ability to retrieve and process relevant contextual data effectively. We demonstrate that LLM performance in graph tasks with complexities beyond the “needle-in-a-haystack” scenario—where solving the problem requires cross-referencing and reasoning across multiple subproblems jointly—is influenced by the proximity of relevant information within the context, a phenomenon we term “lost-in-distance”. We examine two fundamental graph tasks: identifying common connections between two nodes and assessing similarity among three nodes, and show that the model’s performance in these tasks significantly depends on the relative positioning of common edges. We evaluate three publicly available LLMs—Llama-3-8B, Llama-3-70B, and GPT-4—using various graph encoding techniques that represent graph structures for LLM input. We propose a formulation for the lost-in-distance phenomenon and demonstrate that lost-in-distance and lost-in-the middle phenomenas occur independently. Results indicate that model accuracy can decline by up to 6x as the distance between node connections increases, independent of graph encoding and model size.
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8900
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview