Multi-Source Diffusion Models for Simultaneous Music Generation and Separation

Published: 16 Jan 2024, Last Modified: 15 Mar 2024ICLR 2024 oralEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: source separation, probabilistic diffusion models, music generation
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: In this work, we define a diffusion-based generative model which is the first to be capable of both music generation and source separation. We also introduce the partial generation task, where we generate a subset of the sources given the others.
Abstract: In this work, we define a diffusion-based generative model capable of both music generation and source separation by learning the score of the joint probability density of sources sharing a context. Alongside the classic total inference tasks (i.e., generating a mixture, separating the sources), we also introduce and experiment on the partial generation task of source imputation, where we generate a subset of the sources given the others (e.g., play a piano track that goes well with the drums). Additionally, we introduce a novel inference method for the separation task based on Dirac likelihood functions. We train our model on Slakh2100, a standard dataset for musical source separation, provide qualitative results in the generation settings, and showcase competitive quantitative results in the source separation setting. Our method is the first example of a single model that can handle both generation and separation tasks, thus representing a step toward general audio models.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: generative models
Submission Number: 3354
Loading