SEED: Accelerating Reasoning Tree Construction via Scheduled Speculative Decoding

Published: 09 Oct 2024, Last Modified: 19 Nov 2024Compression Workshop @ NeurIPS 2024EveryoneRevisionsBibTeXCC BY 4.0
Keywords: computational efficiency, accelerating large model inference, Speculative Decoding
Abstract: Large Language Models (LLMs) demonstrate remarkable emergent abilities across various tasks, yet fall short of complex reasoning and planning tasks. The tree-search-based reasoning methods address this by encouraging the exploration of intermediate steps, surpassing the capabilities of chain-of-thought prompting. However, significant inference latency is introduced due to the systematic exploration and evaluation of multiple thought paths. This paper introduces SEED, a novel and efficient inference framework to improve both runtime speed and GPU memory management concurrently. Based on a scheduled speculative execution, SEED efficiently handles multiple iterations for thought generation and state evaluation, leveraging a rounds-scheduled strategy to manage draft model dispatching. Extensive experimental evaluations on three reasoning datasets demonstrate the superior speedup performance of SEED.
Submission Number: 37
Loading