Refining Counterfactual Explanations With Joint-Distribution-Informed Shapley Towards Actionable Minimality
Keywords: Explainable artificial Intelligence, Feature attributions, Counterfactual explanations
Abstract: Counterfactual explanations (CE) identify data points that closely resemble the observed data but produce different machine learning (ML) model outputs, offering critical insights into model decisions. Despite the diverse scenarios, goals and tasks to which they are tailored, existing CE methods often lack actionable efficiency because of unnecessary feature changes included within the explanations that are presented to users and stakeholders. We address this problem by proposing a method that minimizes the required feature changes while maintaining the validity of CE, without imposing restrictions on models or CE algorithms, whether instance- or group-based. The key innovation lies in computing a joint distribution between observed and counterfactual data and leveraging it to inform Shapley values for feature attributions (FA). We demonstrate that optimal transport (OT) effectively derives this distribution, especially when the alignment between observed and counterfactual data is unclear in used CE methods. Additionally, a counterintuitive finding is uncovered: it may be misleading to rely on an exact alignment defined by the CE generation mechanism in conducting FA. Our proposed method is validated on extensive experiments across multiple datasets, showcasing its effectiveness in refining CE towards greater actionable efficiency.
Supplementary Material: zip
Primary Area: interpretability and explainable AI
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4618
Loading